By Topic

On the Use of Mutual Information to Compare the Performance of Wireless Sensor Networks in Detection Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Benedito J. B. Fonseca Jr. ; Wireless Syst. Res. Lab., Motorola Labs., Schaumburg, IL ; John A. Gubner

The problem of choosing among candidate wireless sensor networks (WSNs) that send data to a fusion center to detect a binary phenomenon in nature is considered. Viewing the system as a communication channel in which nature is the transmitter and the fusion center is the receiver, it is intuitive to prefer the system that provides the highest mutual information between the phenomenon and the received signal at the fusion center. This paper reviews existing literature on this criterion and provides complementary results showing that, under a Bayesian framework, a WSN that provides equal or higher mutual information than other WSNs results in equal or better detection performance only in very restrictive settings. This paper also presents a bound on the detection performance of a WSN having the highest mutual information, and it is shown that the bound becomes tight as the mutual information approaches its maximum. Similar conclusions are obtained in the Neyman-Pearson framework.

Published in:

Information Processing in Sensor Networks, 2008. IPSN '08. International Conference on

Date of Conference:

22-24 April 2008