By Topic

Short-Channel Characteristics of Self-Aligned \Pi -Shaped Source/Drain Ultrathin SOI MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Jyi-Tsong Lin ; Dept. of Electr. Eng., Nat. Sun Yat-Sen Univ., Kaohsiung ; Yi-Chuen Eng ; Hau-Yuan Huang ; Shiang-Shi Kang
more authors

A novel device architecture-the self-aligned pi-shaped source/drain (S/D) ultrathin silicon-on-insulator (UTSOI) FET-is presented for the first time in the field of silicon-on-insulator (SOI) technology; this new device demonstrates how to decrease the self-heating effects in the SOI-based devices. Two-dimensional simulations show that the cost of building an S/D tie into the UTSOI-FET is a modest degradation of the short-channel characteristics including drain-induced barrier lowering (DIBL) and subthreshold swing (SS), when compared with a traditional UTSOI-FET. This degradation occurs because the S/D-tied scheme introduces two additional pathways between the S/D regions and the silicon substrate, thereby reducing the gate's ability to control the channel. Yet, the results presented here show these negative effects to be reasonably small (e.g., DIBL ang 90 mV/V and SS ang 100 mV/dec), whereas the positive effect of reduced self-induced heating is substantial and significantly improves device reliability.

Published in:

Electron Devices, IEEE Transactions on  (Volume:55 ,  Issue: 6 )