Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Multilevel Multiphase Space Vector PWM Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In the last few years, interest in multiphase converter technology has increased due to the benefits of using more than three phases in drive applications. Besides, multilevel converter technology permits the achievement of high power ratings with voltage limited devices. Multilevel multiphase technology combines the benefits of both technologies, but new modulation techniques must be developed in order to take advantage of multilevel multiphase converters. In this paper, a novel space vector pulsewidth modulation (SVPWM) algorithm for multilevel multiphase voltage source converters is presented. This algorithm is the result of the two main contributions of this paper: the demonstration that a multilevel multiphase modulator can be realized from a two-level multiphase modulator, and the development of a new two-level multiphase SVPWM algorithm. The multiphase SVPWM algorithm presented in this paper can be applied to most multilevel topologies; it has low computational complexity and it is suitable for hardware implementations. Finally, the algorithm was implemented in a low-cost field-programmable gate array and it was tested in a laboratory with a real prototype using a five-level five-phase inverter.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:55 ,  Issue: 5 )