By Topic

Modeling of Induction Machines Using a Voltage-Behind-Reactance Formulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liwei Wang ; Univ. of British Columbia, Vancouver ; Jatskevich, J. ; Pekarek, S.D.

Over the past several years, there has been renewed interest in modeling electrical machines using phase (abc) variables. This paper considers modeling induction machines using phase variables in a voltage-behind-reactance (VBR) formulation. Specifically, three VBR models are proposed wherein the rotor electrical subsystem is modeled using flux linkages as state variables expressed in the qd reference frame. The stator electrical dynamics are represented in abc phase coordinates that enable direct interface of the machine model to an external network. Such a direct interface is advantageous when the machine is fed from a power electronic converter and/or when the modeling is carried out using circuit-based simulators. Computer studies of an induction machine demonstrate that the proposed VBR models achieve a 740% improvement in computational efficiency as compared with the traditional coupled-circuit phase-domain model.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:23 ,  Issue: 2 )