Cart (Loading....) | Create Account
Close category search window
 

Dynamic Simulator for a PEM Fuel Cell System With a PWM DC/DC Converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Polymer electrolyte membrane (PEM) fuel cells typically have low voltage, high current, terminal characteristics that cannot accommodate common electric loads like electric motors or power utility grids. Thus, a dc/dc converter is required to boost the output voltage of these power systems. Furthermore, the terminal characteristics are dependent on loads and operating conditions of the fuel cell system. The continuously changing power demand of an electric load requires dynamically replenishing the air and fuel, by properly maintaining humidity in the cell and efficiently rejecting the heat produced. These factors present important challenges for the design of reliable and durable power systems. We present new dynamic models for a fuel cell system and a pulsewidth modulation dc/dc converter with associated controls and integration. The model for the system consists of three subsystems that include an PEM fuel cell stack, an air supply, and a thermal system. Four different controllers were designed to control the air, the coolant, and the output voltage of the converter, and to optimize the power flow between the fuel cell and the output capacitor. The integrated model with its controls was tested using a real-time simulator that reduced computational time and facilitated the analysis of the interactions between loads and the fuel cell components and also allowed the optimization of a power control strategy. The responses of a static and dynamic load show that the power controls proposed can coordinate two energy sources, resulting in improved dynamics and efficiency.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:23 ,  Issue: 2 )

Date of Publication:

June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.