By Topic

Automatic Model-Based Segmentation of the Heart in CT Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Ecabert, O. ; X-ray Imaging Syst., Philips Res. Eur.-Aachen, Aachen ; Peters, J. ; Schramm, H. ; Lorenz, C.
more authors

Automatic image processing methods are a pre-requisite to efficiently analyze the large amount of image data produced by computed tomography (CT) scanners during cardiac exams. This paper introduces a model-based approach for the fully automatic segmentation of the whole heart (four chambers, myocardium, and great vessels) from 3-D CT images. Model adaptation is done by progressively increasing the degrees-of-freedom of the allowed deformations. This improves convergence as well as segmentation accuracy. The heart is first localized in the image using a 3-D implementation of the generalized Hough transform. Pose misalignment is corrected by matching the model to the image making use of a global similarity transformation. The complex initialization of the multicompartment mesh is then addressed by assigning an affine transformation to each anatomical region of the model. Finally, a deformable adaptation is performed to accurately match the boundaries of the patient's anatomy. A mean surface-to-surface error of 0.82 mm was measured in a leave-one-out quantitative validation carried out on 28 images. Moreover, the piecewise affine transformation introduced for mesh initialization and adaptation shows better interphase and interpatient shape variability characterization than commonly used principal component analysis.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:27 ,  Issue: 9 )