Cart (Loading....) | Create Account
Close category search window
 

Hierarchical Fuzzy Systems for Function Approximation on Discrete Input Spaces With Application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiao-Jun Zeng ; Sch. of Comput. Sci., Univ. of Manchester, Manchester ; Goulermas, J.Y. ; Liatsis, P. ; Di Wang
more authors

This paper investigates the capabilities of hierarchical fuzzy systems to approximate functions on discrete input spaces. First, it is shown that any function on a discrete space has an arbitrary separable hierarchical structure and can be naturally approximated by hierarchical fuzzy systems. As a by-product of this result, a discrete version of Kolmogorov's theorem is obtained; second, it is proven that any function on a discrete space can be approximated to any degree of accuracy by hierarchical fuzzy systems with any desired separable hierarchical structure. That is, functions on discrete spaces can be approximated more simply and flexibly than those on continuous spaces; third, a hierarchical fuzzy system identification method is proposed in which human knowledge and numerical data are combined for system construction and identification. Finally, the proposed method is applied to the market condition performance modeling problem in site selection decision support and shows the better performance in both accuracy and interpretability than the regression and neural network approaches. In additions, the reason and mechanism why hierarchical fuzzy systems outperform regression and neural networks in this type of application are analyzed.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:16 ,  Issue: 5 )

Date of Publication:

Oct. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.