Cart (Loading....) | Create Account
Close category search window
 

Pattern Trees Induction: A New Machine Learning Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhiheng Huang ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California at Berkeley, Berkeley, CA ; Gedeon, T.D. ; Nikravesh, M.

Fuzzy classification is one of the most important applications in fuzzy set and fuzzy-logic-related research. Its goal is to find a set of fuzzy rules that form a classification model. Most of the existing fuzzy rule induction methods (e.g., the fuzzy decision trees (FDTs) induction method) focus on searching rules consisting of triangular norms (t-norms) (i.e., and) only, but not triangular conorms (t-conorms) (or) explicitly. This may lead to the omission of generating important rules that involve t-conorms explicitly. This paper proposes a type of tree termed pattern trees (PTs) that makes use of different aggregations, including both t-norms and t-conorms. Like decision trees, PTs are an effective tool for classification applications. This paper discusses the difference between decision trees and PTs, and also shows that the subsethood-based method (SBM) and the weighted-subsethood-based method (WSBM) are two specific cases of PT induction. A novel PT induction method is proposed using similarity measure and fuzzy aggregations. The comparison to other classification methods including SBM, WSBM, C4.5, nearest neighbor, support vector machine, and FDT induction shows that: 1) PTs can obtain high accuracy rates in classifications; 2) PTs are robust to overfltting; and 3) PTs, especially simple pattern trees (SPTs), maintain compact tree structures.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:16 ,  Issue: 4 )

Date of Publication:

Aug. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.