Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Modeling Fuzziness Measures for Best Wavelet Selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Arafat, S. ; Missouri Univ., Columbia, MO ; Skubic, M.

Uncertainty measures model different types of uncertainty that are inherent in complex information systems. Measures that model either fuzzy or probabilistic uncertainty types have been explored in the literature. This paper shows that a combination of fuzzy and probabilistic uncertainty types, combined with the generalized maximum uncertainty principle, can be applied to time-series sequence classification and analysis. We present a novel algorithm that selects a wavelet from a wavelet library such that it best represents a time-series sequence, in a maximum uncertainty sense. Transformation coefficients are combined together in feature vectors that capture sequence temporal trends. A neural network is trained and tested using extracted gait sequence temporal features. Results have shown that models that combine together fuzzy and probabilistic uncertainty types better classify time-series gait sequences.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:16 ,  Issue: 5 )