By Topic

Analysis of the Disruption of Evaporating Charged Droplets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Roth, Donald G. ; Plant Systems Group, Computing and Technology and Service, Exxon Research and Engineering Company ; Kelly, Arnold J.

Charged droplets undergo periodic convulsive disruption during evaporation. This makes their behavior fundamentally different from that of uncharged droplets. During the disruption, a number of small "sibling" droplets (about 15¿m diameter) are released and carry 5 percent of the mass and about 25 percent of the charge. An analytical model of this process which is based on a "macroscopic" approach is presented. The model predicts characteristics of the final, postdisruption state (e. g., charge and mass ratios, number of droplets produced) which are in good agreement with experimental data for droplets having initial sizes less than about 100-pm diameter. A most interesting result of this analysis is the prediction that a limited number of sibling droplets (about seven) can be produced.

Published in:

Industry Applications, IEEE Transactions on  (Volume:IA-19 ,  Issue: 5 )