By Topic

Current Response Simulation in Six-Phase and Twelve-Phase Cycloconverters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tadakuma, Susumu ; Heavy Apparatus Engineering Laboratory, Toshiba. Corporation, Tokyo 183, Japan. ; Tamura, Yoshiaki

Cycloconverters are aptly used for the power supply of variable speed synchronous motors. However, output current offset and phase deviation increase in higher output frequency operation, and ripple current causes torque pulsation of the synchronous motor. A compensating method to improve current response performance is proposed and a digital simulation procedure in order to analyze the output current response of a cycloconverter is discussed. First, the six-phase noncirculating-type cycloconverter is discussed. Next the six-phase cycloconverter simulation was applied to the 12-phase cycloconverter. The simulated waveforms were compared with the experimental results in motor operation or regenerative operation. It was clarified that offset and phase deviation became zero using the compensating circuit. Additionally the average torque pulsation, the output current distortion factor, and the ripple torque versus the output-input frequency ratio were calculated by simulation in the cycloconverter-fed synchronous motor.

Published in:

Industry Applications, IEEE Transactions on  (Volume:IA-15 ,  Issue: 4 )