By Topic

Correlation Noise Modeling for Efficient Pixel and Transform Domain Wyner–Ziv Video Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Catarina Brites ; Inst. Super. Tecnico, Inst. de Telecomun., Lisbon ; Fernando Pereira

In recent years, practical Wyner-Ziv (WZ) video coding solutions have been proposed with promising results. Most of the solutions available in the literature model the correlation noise (CN) between the original frame and its estimation made at the decoder, which is the so-called side information (SI), by a given distribution whose relevant parameters are estimated using an offline process, assuming that the SI is available at the encoder or the originals are available at the decoder. The major goal of this paper is to propose a more realistic WZ video coding approach by performing online estimation of the CN model parameters at the decoder, for pixel and transform domain WZ video codecs. In this context, several new techniques are proposed based on metrics which explore the temporal correlation between frames with different levels of granularity. For pixel-domain WZ (PDWZ) video coding, three levels of granularity are proposed: frame, block, and pixel levels. For transform-domain WZ (TDWZ) video coding, DCT bands and coefficients are the two granularity levels proposed. The higher the estimation granularity is, the better the rate-distortion performance is since the deeper the adaptation of the decoding process is to the video statistical characteristics, which means that the pixel and coefficient levels are the best performing for PDWZ and TDWZ solutions, respectively.

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:18 ,  Issue: 9 )