By Topic

Simplified Motion-Refined Scheme for Fine-Granularity Scalability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yih Han Tan ; Grad. Sch. for Integrative Sci. & Eng., Nat. Univ. of Singapore, Singapore ; Zhengguo Li ; Keng Pang Lim ; Susanto Rahardja

In this paper, we introduce a low-complexity fine-granularity scalable (FGS) video encoder that refines both residue and motion information in the quality layers. The current scalable video coding (SVC) draft shows that significant gains can be achieved when each enhancement layer undergoes the motion estimation/motion compensation (ME/MC) process with its own motion vector field (MVF). However, given the high computational cost of ME/MC, a motion-refined FGS scheme can be expensive to implement. The proposed scheme controls the macroblock (MB) mode allowed in the base layer and channels computational resources to refine motion in enhancement layers. Through a proper selection of Lagrangian factor for the generation of the first MVF, it is possible to design a low-complexity FGS encoder that has good overall coding performance. A simplified motion-refinement scheme is also adopted for selected MBs in enhancement layers by exploiting the correlation of MB-type information between successive layers to further reduce the complexity of the FGS encoder. Meanwhile, a framework of rate-distortion-complexity optimization is proposed for the FGS by considering the interpolation complexity during the ME/MC in each layer. The FGS decoder can be simplified through the reduction in the number of interpolations.

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:18 ,  Issue: 9 )