By Topic

Hand Gesture Recognition Using Haar-Like Features and a Stochastic Context-Free Grammar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qing Chen ; Sch. of Inf. Technol. & Eng., Ottawa Univ., Ottawa, ON ; Georganas, Nicolas D. ; Petriu, E.M.

This paper proposes a new approach to solve the problem of real-time vision-based hand gesture recognition with the combination of statistical and syntactic analyses. The fundamental idea is to divide the recognition problem into two levels according to the hierarchical property of hand gestures. The lower level of the approach implements the posture detection with a statistical method based on Haar-like features and the AdaBoost learning algorithm. With this method, a group of hand postures can be detected in real time with high recognition accuracy. The higher level of the approach implements the hand gesture recognition using the syntactic analysis based on a stochastic context-free grammar. The postures that are detected by the lower level are converted into a sequence of terminal strings according to the grammar. Based on the probability that is associated with each production rule, given an input string, the corresponding gesture can be identified by looking for the production rule that has the highest probability of generating the input string.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:57 ,  Issue: 8 )