By Topic

AC Losses in a Conduction-Cooled LTS Pulse Coil With Stored Energy of 1 MJ for UPS-SMES as Protection From Momentary Voltage Drops

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)

AC losses in the conduction-cooled low temperature superconducting (LTS) pulse coil with stored energy of 1 MJ are estimated. The 1 MJ coil is a superconducting pulse coil for 1 MW, 1 sec UPS-SMES. UPS-SMES is an uninterruptible power supply (UPS) with superconducting magnetic energy storage (SMES) for protection of production lines of an industrial plant or large-scale experimental devices such as a fusion device, from a momentary voltage drop and an instant power failure. The winding conductor for the 1 MJ coil is a NbTi/Cu Rutherford cable, which is extruded with aluminum. The 1 MJ coil was wound by a new twist winding method. A 1 MJ coil was fabricated and cooling and excitation tests were carried out. In this paper, two methods to estimate ac losses in conduction-cooled LTS coils are proposed. One method estimates ac losses in the coil under steady-state conditions. The other method estimates ac losses in the coil under transient-state conditions. For estimation of ac losses in the 1 MJ coil, measurement of temperature in the coil during tests and thermal analysis using the two-dimensional finite element method are compared. These procedures clarified that the 1 MJ coil has low losses.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:18 ,  Issue: 2 )