By Topic

Robust Speech Recognition Using a Cepstral Minimum-Mean-Square-Error-Motivated Noise Suppressor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Dong Yu ; Microsoft Corp., Redmond, WA ; Li Deng ; Jasha Droppo ; Jian Wu
more authors

We present an efficient and effective nonlinear feature-domain noise suppression algorithm, motivated by the minimum-mean-square-error (MMSE) optimization criterion, for noise-robust speech recognition. Distinguishing from the log-MMSE spectral amplitude noise suppressor proposed by Ephraim and Malah (E&M), our new algorithm is aimed to minimize the error expressed explicitly for the Mel-frequency cepstra instead of discrete Fourier transform (DFT) spectra, and it operates on the Mel-frequency filter bank's output. As a consequence, the statistics used to estimate the suppression factor become vastly different from those used in the E&M log-MMSE suppressor. Our algorithm is significantly more efficient than the E&M's log-MMSE suppressor since the number of the channels in the Mel-frequency filter bank is much smaller (23 in our case) than the number of bins (256) in DFT. We have conducted extensive speech recognition experiments on the standard Aurora-3 task. The experimental results demonstrate a reduction of the recognition word error rate by 48% over the standard ICSLP02 baseline, 26% over the cepstral mean normalization baseline, and 13% over the popular E&M's log-MMSE noise suppressor. The experiments also show that our new algorithm performs slightly better than the ETSI advanced front end (AFE) on the well-matched and mid-mismatched settings, and has 8% and 10% fewer errors than our earlier SPLICE (stereo-based piecewise linear compensation for environments) system on these settings, respectively.

Published in:

IEEE Transactions on Audio, Speech, and Language Processing  (Volume:16 ,  Issue: 5 )