By Topic

Modal Propagation and Excitation on a Wire-Medium Slab

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Paolo Burghignoli ; Dept. of Electron. Eng., La Sapienza Univ. of Rome, Rome ; Giampiero Lovat ; Filippo Capolino ; David R. Jackson
more authors

A grounded wire-medium slab has recently been shown to support leaky modes with azimuthally independent propagation wavenumbers capable of radiating directive omnidirectional beams. In this paper, the analysis is generalized to wire-medium slabs in air, extending the omnidirectionality properties to even modes, performing a parametric analysis of leaky modes by varying the geometrical parameters of the wire-medium lattice, and showing that, in the long-wavelength regime, surface modes cannot be excited at the interface between the air and wire medium. The electric field excited at the air/wire-medium interface by a horizontal electric dipole parallel to the wires is also studied by deriving the relevant Green's function for the homogenized slab model. When the near field is dominated by a leaky mode, it is found to be azimuthally independent and almost perfectly linearly polarized. This result, which has not been previously observed in any other leaky-wave structure for a single leaky mode, is validated through full-wave moment-method simulations of an actual wire-medium slab with a finite size.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:56 ,  Issue: 5 )