Cart (Loading....) | Create Account
Close category search window
 

An on-line learning algorithm for energy efficient delay constrained scheduling over a fading channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In this paper, we consider the problem of energy efficient scheduling under average delay constraint for a single user fading channel. We propose a new approach for on-line implementation of the optimal packet scheduling algorithm. This approach is based on reformulating the value iteration equation by introducing a virtual state called post-decision state. The resultant value iteration equation becomes amenable to online implementation based on stochastic approximation. This approach has an advantage that an explicit knowledge of the probability distribution of the channel state as well as the arrivals is not required for the implementation. We prove that the on-line algorithm indeed converges to the optimal policy.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:26 ,  Issue: 4 )

Date of Publication:

May 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.