Cart (Loading....) | Create Account
Close category search window
 

The end-to-end rate control in multiple-hop wireless networks: Cross-layer formulation and optimal allocation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chengnian Long ; Yanshan Univ., Qinhuangdao ; Bo Li ; Qian Zhang ; Bin Zhao
more authors

In this paper, we study the theoretical problem of the end-to-end rate assignment for multi-hop wireless networks. Specifically, we consider the problem of joint congestion control, random access and power control design with multi-hop transmissions and interference-limited link rates. In order to address both the end-to-end throughput maximization and energy efficiency, we formulate this problem into a cross-layer design problem under a realistic interference-based communication model, which captures the attainable link capacity in practice. There are primarily three challenges in this design: 1) how to formulate the cross-layer design; 2) how to solve the non- convex and non-separable problem efficiently; more importantly 3) under a reasonably complexity, how to design a distributed algorithm that can realize this formulation while maintaining the architectural modularity among different layers. First, we propose a novel method that can convert a non- convex and non-separable programming into an equivalent convex programming problem. The problem is solved by a dual decomposition technique. We show that the resulting algorithm can be practically realized. We then design a distributed algorithm that jointly considers random access and power control to adapt for the transport layer congestion status. Simulation results confirm that the proposed algorithm can achieve close to the global optimum within reasonable convergence times.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:26 ,  Issue: 4 )

Date of Publication:

May 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.