By Topic

Distributed function calculation and consensus using linear iterative strategies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sundaram, S. ; Univ. of Illinois at Urbana-Champaign, Urbana ; Hadjicostis, C.N.

Given an arbitrary network of interconnected nodes, we develop and analyze a distributed strategy that enables a subset of the nodes to calculate any given function of the node values. Our scheme utilizes a linear iteration where, at each time-step, each node updates its value to be a weighted average of its own previous value and those of its neighbors. We show that this approach can be viewed as a linear dynamical system, with dynamics that are given by the weight matrix of the linear iteration, and with outputs for each node that are captured by the set of values that are available to that node at each time-step. In connected networks with time-invariant topologies, we use observability theory to show that after running the linear iteration for a finite number of time-steps with almost any choice of weight matrix, each node obtains enough information to calculate any arbitrary function of the initial node values. The problem of distributed consensus via linear iterations, where all nodes in the network calculate the same function, is treated as a special case of our approach. In particular, our scheme allows nodes in connected networks with time-invariant topologies to reach consensus on any arbitrary function of the initial node values in a finite number of steps for almost any choice of weight matrix.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:26 ,  Issue: 4 )