By Topic

Distributed Kalman filtering based on consensus strategies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Carli, R. ; Univ. di Padova, Padova ; Chiuso, A. ; Schenato, L. ; Zampieri, S.

In this paper, we consider the problem of estimating the state of a dynamical system from distributed noisy measurements. Each agent constructs a local estimate based on its own measurements and on the estimates from its neighbors. Estimation is performed via a two stage strategy, the first being a Kalman-like measurement update which does not require communication, and the second being an estimate fusion using a consensus matrix. In particular we study the interaction between the consensus matrix, the number of messages exchanged per sampling time, and the Kalman gain for scalar systems. We prove that optimizing the consensus matrix for fastest convergence and using the centralized optimal gain is not necessarily the optimal strategy if the number of exchanged messages per sampling time is small. Moreover, we show that although the joint optimization of the consensus matrix and the Kalman gain is in general a non-convex problem, it is possible to compute them under some relevant scenarios. We also provide some numerical examples to clarify some of the analytical results and compare them with alternative estimation strategies.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:26 ,  Issue: 4 )