By Topic

Adaptive Approximate Similarity Searching through Metric Social Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Exploiting the concepts of social networking represents a novel approach to the approximate similarity query processing. We present a metric social network where relations between peers, giving similar results, are established on per-query basis. Based on the universal law of generalization, a new query forwarding algorithm is proposed. The same principle is used to manage query histories of individual peers with the possibility to tune the tradeoff between the extent of the history and the level of the query-answer approximation. All algorithms are tested on real data and real network of computers.

Published in:

Data Engineering, 2008. ICDE 2008. IEEE 24th International Conference on

Date of Conference:

7-12 April 2008