Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Privacy: Theory meets Practice on the Map

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Machanavajjhala, A. ; Dept. of Comput. Sci., Cornell Univ., Ithaca, NY ; Kifer, D. ; Abowd, J. ; Gehrke, J.
more authors

In this paper, we propose the first formal privacy analysis of a data anonymization process known as the synthetic data generation, a technique becoming popular in the statistics community. The target application for this work is a mapping program that shows the commuting patterns of the population of the United States. The source data for this application were collected by the U.S. Census Bureau, but due to privacy constraints, they cannot be used directly by the mapping program. Instead, we generate synthetic data that statistically mimic the original data while providing privacy guarantees. We use these synthetic data as a surrogate for the original data. We find that while some existing definitions of privacy are inapplicable to our target application, others are too conservative and render the synthetic data useless since they guard against privacy breaches that are very unlikely. Moreover, the data in our target application is sparse, and none of the existing solutions are tailored to anonymize sparse data. In this paper, we propose solutions to address the above issues.

Published in:

Data Engineering, 2008. ICDE 2008. IEEE 24th International Conference on

Date of Conference:

7-12 April 2008