Cart (Loading....) | Create Account
Close category search window

Characterizing Game Dynamics in Two-Player Strategy Games Using Network Motifs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ghoneim, A. ; Sch. of Inf. Technol. & Electr. Eng., New South Wales Univ., Canberra, ACT ; Abbass, H. ; Barlow, M.

Many complex systems, whether biological, sociological, or physical ones, can be represented using networks. In these networks, a node represents an entity, and an arc represents a relationship/constraint between two entities. In discrete dynamics, one can construct a series of networks with each network representing a time snapshot of interaction among the different components in the system. Understanding these networks is a key to understand the dynamics of real and artificial systems. Network motifs are small graphs-usually three to four nodes-representing local structures. They have been widely used in studying complex systems and in characterizing features on the system level by analyzing locally how the substructures are formed. Frequencies of different network motifs have been shown in the literature to vary from one network to another, and conclusions hypothesized that these variations are due to the evolution/dynamics of the system. In this paper, we show for the first time that in strategy games, each game (i.e., type of dynamism) has its own signature of motifs and that this signature is maintained during the evolution of the game. We reveal that deterministic strategy games have unique footprints (motifs' count) that can be used to recognize and classify the game's type and that these footprints are consistent along the evolutionary path of the game. The findings of this paper have significance for a wide range of fields in cybernetics.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:38 ,  Issue: 3 )

Date of Publication:

June 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.