By Topic

Random Field Model for Integration of Local Information and Global Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Takahiro Toyoda ; Tokyo Institute of Technology, Kanagawa-ken ; Osamu Hasegawa

This paper presents a proposal of a general framework that explicitly models local information and global information in a conditional random field. The proposed method extracts global image features as well as local ones and uses them to predict the scene of the input image. Scene-based top-down information is generated based on the predicted scene. It represents a global spatial configuration of labels and category compatibility over an image. Incorporation of the global information helps to resolve local ambiguities and achieves locally and globally consistent image recognition. In spite of the model's simplicity, the proposed method demonstrates good performance in image labeling of two datasets.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:30 ,  Issue: 8 )