Cart (Loading....) | Create Account
Close category search window
 

Robust Wavelet-Based Super-Resolution Reconstruction: Theory and Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hui Ji ; Dept. of Math., Nat. Univ. of Singapore, Singapore ; Fermuller, C.

We present an analysis and algorithm for the problem of super-resolution imaging, that is the reconstruction of HR (high-resolution) images from a sequence of LR (low-resolution) images. Super-resolution reconstruction entails solutions to two problems. One is the alignment of image frames. The other is the reconstruction of a HR image from multiple aligned LR images. Both are important for the performance of super-resolution imaging. Image alignment is addressed with a new batch algorithm, which simultaneously estimates the homographies between multiple image frames by enforcing the surface normal vectors to be the same. This approach can handle longer video sequences quite well. Reconstruction is addressed with a wavelet-based iterative reconstruction algorithm with an efficient de-noising scheme. The technique is based on a new analysis of video formation. At a high level our method could be described as a better-conditioned iterative back projection scheme with an efficient regularization criteria in each iteration step. Experiments with both simulated and real data demonstrate that our approach has better performance than existing super-resolution methods. It can remove even large amounts of mixed noise without creating artifacts.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:31 ,  Issue: 4 )

Date of Publication:

April 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.