Cart (Loading....) | Create Account
Close category search window
 

Tracking People on a Torus

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Elgammal, A. ; Dept. of Comput. Sci., Rutgers Univ., Piscataway, NJ ; Chan-Su Lee

We present a framework for monocular 3D kinematic pose tracking and viewpoint estimation of periodic and quasi-periodic human motions from an uncalibrated camera. The approach we introduce here is based on learning both the visual observation manifold and the kinematic manifold of the motion using a joint representation. We show that the visual manifold of the observed shape of a human performing a periodic motion, observed from different viewpoints, is topologically equivalent to a torus manifold. The approach we introduce here is based on the supervised learning of both the visual and kinematic manifolds. Instead of learning an embedding of the manifold, we learn the geometric deformation between an ideal manifold (conceptual equivalent topological structure) and a twisted version of the manifold (the data). Experimental results show accurate estimation of the 3D body posture and the viewpoint from a single uncalibrated camera.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:31 ,  Issue: 3 )

Date of Publication:

March 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.