By Topic

Coverage in Hybrid Mobile Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Wang ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; Srinivasan, V. ; Kee-Chaing Chua

This paper considers the coverage problem for hybrid networks which comprise both static and mobile sensors. The mobile sensors in our network only have limited mobility, i.e., they can move only once over a short distance. In random static sensor networks, sensor density should increase as O(log L + k log log L) to provide k-coverage in a network with a size of L. As an alternative, an all-mobile network can provide k-coverage with a constant density of O(k), independent of network size L. We show that the maximum distance for mobile sensors is O( 1/radic(k) log 3/4(kL)). We then propose a hybrid network structure, comprising static sensors and a small fraction of O( 1/radic(k)) of mobile sensors. For this network structure, we prove that k-coverage is also achievable with a constant sensor density of O(k). Furthermore, for this hybrid structure, we prove that the maximum distance which any mobile sensor has to move is bounded as O(log(3/4)L). We then propose a distributed relocation algorithm, where each mobile sensor only requires local information in order to optimally relocate itself. We verify our analysis via extensive numerical evaluations and show an implementation of the mobility algorithm on real mobile sensor platforms.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:7 ,  Issue: 11 )