Cart (Loading....) | Create Account
Close category search window
 

SOPC Co-design Platform for UWB System in Wireless Sensor Network Context

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dragomirescu, D. ; LAAS-CNRS, Univ. of Toulouse, Toulouse ; Lecointre, A. ; Plana, R.

This paper presents our approach of the radio interface problematic for wireless sensor network. We introduce the WSN context and constraints associated. We propose an IR-UWB solution and illustrate why it could be a viable solution for WSN. A high level modelling and simulation platform for IR-UWB radio interface is proposed on Matlab. It allows us to determine according to BER versus Eb/N0 criteria and the WSN constraints what kind of design is more adequate. Moreover, a co-design co-simulation platform Matlab VHDL is proposed here. Using this platform we designed IR-UWB transceiver having reconfigurable capabilities, such as data rate reconfiguration, time hopping code, spectrum occupation and radio range reconfiguration.

Published in:

Systems, 2008. ICONS 08. Third International Conference on

Date of Conference:

13-18 April 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.