By Topic

Design Status of the R3B-GLAD Magnet: Large Acceptance Superconducting Dipole With Active Shielding, Graded Coils, Large Forces and Indirect Cooling by Thermosiphon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
Gastineau, B. ; DSM Dapnia, CEA Saclay, Gif-sur-Yvette ; Donati, A. ; Ducret, J.-E. ; Eppelle, D.
more authors

The R3B-Glad superconducting Magnet provides the field required for a large acceptance spectrometer, dedicated to the analysis of Reactions with Relativistic Radioactive ions Beams. In the framework of the FAIR Project to GSI and within NUSTAR physics program, the technical study started in 2006, and the engineering design is undertaken. One main feature of this butterfly-like magnet with graded, tilted and trapezoidal racetrack coils is the active shielding. It makes it possible to decreasing the field by two orders of magnitude within a 1.2 m length, despite the large opening on the outlet side of the magnet (around 0.8 square meters). The fringe field is lower than 20 mT in the target area beside the entry, while the main field is larger than 2 teslas, out of 2 m length. The other principal characteristics are as follows: first, a high level of magnetic forces (300 to 400 tons per meter), with little place to block the coils, requiring a very specific mechanical structure; then, the magnet protection system that is based on an external dump resistor, coupled to a strong quenchback effect, to prevent any damage of the coils which could be caused by the 24 MJ of stored energy; lastly, the indirect cooling of the cold mass with a two-phase helium thermosiphon. The overall size of the conical cryostat will be around 3.5 m long, 3.8 m high and 7 m broad.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:18 ,  Issue: 2 )