By Topic

A Fault Tolerant Doubly Fed Induction Generator Wind Turbine Using a Parallel Grid Side Rectifier and Series Grid Side Converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Patrick S. Flannery ; Univ. of Wisconsin-Madison, Madison, WI ; Giri Venkataramanan

With steadily increasing wind turbine penetration, regulatory standards for grid interconnection have evolved to require that wind generation systems ride-through disturbances such as faults and support the grid during such events. Conventional modifications to the doubly fed induction generation (DFIG) architecture for providing ride-through result in compromised control of the turbine shaft and grid current during fault events. A DFIG architecture in which the grid side converter is connected in series as opposed to parallel with the grid connection has shown improved low voltage ride through but poor power processing capabilities. In this paper, a unified DFIG wind turbine architecture which employs a parallel grid side rectifier and series grid side converter is presented. The combination of these two converters enables unencumbered power processing and robust voltage disturbance ride through. A dynamic model and control structure for this architecture is developed. The operation of the system is illustrated using computer simulations.

Published in:

IEEE Transactions on Power Electronics  (Volume:23 ,  Issue: 3 )