By Topic

A Generalization of the Blahut–Arimoto Algorithm to Finite-State Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vontobel, P.O. ; Hewlett-Packard Labs., Palo Alto ; Kavcic, A. ; Arnold, D.M. ; Loeliger, H.-A.

The classical Blahut-Arimoto algorithm (BAA) is a well-known algorithm that optimizes a discrete memoryless source (DMS) at the input of a discrete memoryless channel (DMC) in order to maximize the mutual information between channel input and output. This paper considers the problem of optimizing finite-state machine sources (FSMSs) at the input of finite-state machine channels (FSMCs) in order to maximize the mutual information rate between channel input and output. Our main result is an algorithm that efficiently solves this problem numerically; thus, we call the proposed procedure the generalized BAA. It includes as special cases not only the classical BAA but also an algorithm that solves the problem of finding the capacity-achieving input distribution for finite-state channels with no noise. While we present theorems that characterize the local behavior of the generalized BAA, there are still open questions concerning its global behavior; these open questions are addressed by some conjectures at the end of the paper. Apart from these algorithmic issues, our results lead to insights regarding the local conditions that the information-rate-maximizing FSMSs fulfill; these observations naturally generalize the well-known Kuhn-Tucker conditions that are fulfilled by capacity-achieving DMSs at the input of DMCs.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 5 )