By Topic

Information Consistency of Nonparametric Gaussian Process Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Seeger, M. ; Max Planck Inst. for Biol. Cybern., Tubingen ; Kakade, S.M. ; Foster, D.P.

Bayesian nonparametric models are widely and successfully used for statistical prediction. While posterior consistency properties are well studied in quite general settings, results have been proved using abstract concepts such as metric entropy, and they come with subtle conditions which are hard to validate and not intuitive when applied to concrete models. Furthermore, convergence rates are difficult to obtain. By focussing on the concept of information consistency for Bayesian Gaussian process (GP)models, consistency results and convergence rates are obtained via a regret bound on cumulative log loss. These results depend strongly on the covariance function of the prior process, thereby giving a novel interpretation to penalization with reproducing kernel Hilbert space norms and to commonly used covariance function classes and their parameters. The proof of the main result employs elementary convexity arguments only. A theorem of Widom is used in order to obtain precise convergence rates for several covariance functions widely used in practice.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 5 )