By Topic

Mutual Information and Conditional Mean Estimation in Poisson Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dongning Guo ; Northwestern Univ., Evanston ; Shamai, S. ; Verdu, S.

Following the discovery of a fundamental connection between information measures and estimation measures in Gaussian channels, this paper explores the counterpart of those results in Poisson channels. In the continuous-time setting, the received signal is a doubly stochastic Poisson point process whose rate is equal to the input signal plus a dark current. It is found that, regardless of the statistics of the input, the derivative of the input-output mutual information with respect to the intensity of the additive dark current can be expressed as the expected difference between the logarithm of the input and the logarithm of its noncausal conditional mean estimate. The same holds for the derivative with respect to input scaling, but with the logarithmic function replaced by x log x. Similar relationships hold for discrete-time versions of the channel where the outputs are Poisson random variables conditioned on the input symbols.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 5 )