By Topic

Asymptotic Properties of the Detrended Fluctuation Analysis of Long-Range-Dependent Processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bardet, J.-M. ; Univ. of Paris 1, Paris ; Kammoun, I.

In the past few years, a certain number of authors have proposed analysis methods of the time series built from a long-range dependence noise. One of these methods is the detrended fluctuation analysis (DFA), frequently used in the case of physiological data processing. The aim of this method is to highlight the long-range dependence of a time series with trend. In this paper, asymptotic properties of the DFA of the fractional Gaussian noise (FGN) are provided. Those results are also extended to a general class of stationary long-range-dependent processes. As a consequence, the convergence of the semiparametric estimator of the Hurst parameter is established. However, several simple examples also show that this method is not at all robust in the case of trends.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 5 )