Cart (Loading....) | Create Account
Close category search window
 

A Geometrical Study of Matching Pursuit Parametrization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jacques, L. ; Commun. & Remote Sensing Lab., Univ. Catholique de Louvain, Louvain-la-Neuve ; De Vleeschouwer, C.

This paper studies the effect of discretizing the parametrization of a dictionary used for matching pursuit (MP) decompositions of signals. Our approach relies on viewing the continuously parametrized dictionary as an embedded manifold in the signal space on which the tools of differential (Riemannian) geometry can be applied. The main contribution of this paper is twofold. First, we prove that if a discrete dictionary reaches a minimal density criterion, then the corresponding discrete MP (dMP) is equivalent in terms of convergence to a weakened hypothetical continuous MP. Interestingly, the corresponding weakness factor depends on a density measure of the discrete dictionary. Second, we show that the insertion of a simple geometric gradient ascent optimization on the atom dMP selection maintains the previous comparison but with a weakness factor at least two times closer to unity than without optimization. Finally, we present numerical experiments confirming our theoretical predictions for decomposition of signals and images on regular discretizations of dictionary parametrizations.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 7 )

Date of Publication:

July 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.