Cart (Loading....) | Create Account
Close category search window

Principal Axes Estimation Using the Vibration Modes of Physics-Based Deformable Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Krinidis, S. ; Dept. of Inf. Manage., Technol. Inst. of Kavala, Kavala ; Chatzis, V.

This paper addresses the issue of accurate, effective, computationally efficient, fast, and fully automated 2-D object orientation and scaling factor estimation. The object orientation is calculated using object principal axes estimation. The approach relies on the object's frequency-based features. The frequency-based features used by the proposed technique are extracted by a 2-D physics-based deformable model that parameterizes the objects shape. The method was evaluated on synthetic and real images. The experimental results demonstrate the accuracy of the method, both in orientation and the scaling estimations.

Published in:

Image Processing, IEEE Transactions on  (Volume:17 ,  Issue: 6 )

Date of Publication:

June 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.