Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Path Planning for Autonomous Vehicles by Trajectory Smoothing Using Motion Primitives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bottasso, C.L. ; Dipt. di Ing. Aerospaziale, Politec. di Milano, Milan ; Leonello, D. ; Savini, B.

We present a novel planning strategy which is applicable to high performance unmanned aerial vehicles. The proposed approach takes as input a 3-D sequence of way-points connected by straight flight trim conditions, and ldquosmoothsrdquo it in an optimal way with the goal of making it compatible with the vehicle dynamics. The smoothing step is achieved by selecting appropriate sequences of alternating trims and maneuvers from within a precomputed library of motion primitives. The resulting extremal trajectory is compatible with the vehicle and therefore trackable with small errors; furthermore, it is guaranteed to stay within the flight envelope boundary, alleviating the need for flight envelope protection systems. Yet it can be computed in real-time using closed-form expressions, all nonlinearities due to the vehicle model being confined to the stored library of motion primitives. The new method is demonstrated for the aggressive maneuvering of a helicopter.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:16 ,  Issue: 6 )