By Topic

Automatic Modulation Recognition of Digital Signals using Wavelet Features and SVM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cheol-Sun Park ; EW Lab., Agency for Defense Dev., Taejon ; Jun-Ho Choi ; Sun-Phil Nah ; Won Jang
more authors

This paper presents modulation classification method capable of classifying incident digital signals without a priori information using WT key features and SVM. These key features for modulation classification should have good properties of sensitive with modulation types and insensitive with SNR variation. In this paper, the 4 key features using WT coefficients, which have the property of insensitive to the changing of noise, are selected. The numerical simulations using these features are performed. We investigate the performance of the SVM-DDAG classifier for classifying 8 digitally modulated signals using only 4 WT key features (i.e., 4 level scale), and compare with that of decision tree classifier to adapt the modulation classification module in software radio. Results indicated an overall success rate of 95% at the SNR of 10dB in SVM-DDAG classifier on an AWGN channel.

Published in:

Advanced Communication Technology, 2008. ICACT 2008. 10th International Conference on  (Volume:1 )

Date of Conference:

17-20 Feb. 2008