By Topic

On hybrid-fuzzy classifier design: An empirical modeling scenario for corrosion detection in gas pipelines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qidwai, U. ; Qatar Univ., Doha ; Maqbool, M.

In this paper, a customized Fuzzy Inference System is presented to classify the corrosion and distinguish it from the geometric defects or normal state of the steel pipes used in gas/petroleum industry. The presented strategy is hybrid in the sense that it utilizes both the soft computing as well as conventional parametric modeling through Hinfin optimization methods. An experimental strategy is first outlined through which the necessary data is collected as A-scan which are the ultrasonic echoes pulses in ID. Then, using empirical modeling approach a parametric transfer function is obtained for each pulse. In this respect, each A-scan is treated as an output from a defining function when a pure metal's A-scan is used as its input. Three defining states are considered in the paper; healthy, corroded, and defective, corresponding to the healthy or very much less corroded metal, corroded metal, and metal with any artificial or other defects, respectively. Impulse responses for each of these parametric models are plotted and human heuristics is then utilized in coming up with a set of quantitative features that can be used in distinguishing these classes. This feature set is then supplied to the Fuzzy Inference system as input to be used in distinguishing various classes under study. The main contribution of this work is to elaborate the fact that corrosion modeling provides easier approach in classifying the A-scans better rather than the raw A-scan data which is more prone to noise errors and more dependent on the measuring device's parameters.

Published in:

Computer Systems and Applications, 2008. AICCSA 2008. IEEE/ACS International Conference on

Date of Conference:

March 31 2008-April 4 2008