By Topic

A framework for predicting proteins 3D structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Duwairi, R. ; Qatar Univ., Doha ; Kassawneh, A.

This paper proposes a framework for predicting protein three dimensional structures from their primary sequences. The proposed method utilizes the natural multi-label and hierarchical intrinsic nature of proteins to build a multi-label and hierarchical classifier for predicting protein folds. The classifier predicts protein folds in two stages, at the first stage, it predicts the protein structural class, and in the second stage, it predicts the protein fold. When comparing our technique with SVM, naive Bayes, and boosted C4.5 we get a higher accuracy more than SVM and better than naive Bayes when using the composition, secondary structure and hydrophobicity feature attributes, and give higher accuracy than C4.5 when using composition, secondary structure, hydrophobicity, and polarity feature attributes. MuLAM was used as a basic classifier in the hierarchy of the implemented framework. Two major modifications were made to MuLAM, namely: the pheromone update and term selection strategies of MuLAM were altered.

Published in:

Computer Systems and Applications, 2008. AICCSA 2008. IEEE/ACS International Conference on

Date of Conference:

March 31 2008-April 4 2008