Cart (Loading....) | Create Account
Close category search window
 

A Comparison of the Effects of Electrode Implantation and Targeting on Pattern Classification Accuracy for Prosthesis Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Farrell, T.R. ; Dept. of Biomed. Eng., Northwestern Univ., Evanston, IL ; Weir, R.F.

The use of surface versus intramuscular electrodes as well as the effect of electrode targeting on pattern-recognition- based multifunctional prosthesis control was explored. Surface electrodes are touted for their ability to record activity from relatively large portions of muscle tissue. Intramuscular electromyograms (EMGs) can provide focal recordings from deep muscles of the forearm and independent signals relatively free of crosstalk. However, little work has been done to compare the two. Additionally, while previous investigations have either targeted electrodes to specific muscles or used untargeted (symmetric) electrode arrays, no work has compared these approaches to determine if one is superior. The classification accuracies of pattern-recognition-based classifiers utilizing surface and intramuscular as well as targeted and untargeted electrodes were compared across 11 subjects. A repeated-measures analysis of variance revealed that when only EMG amplitude information was used from all available EMG channels, the targeted surface, targeted intramuscular, and untargeted surface electrodes produced similar classification accuracies while the untargeted intramuscular electrodes produced significantly lower accuracies. However, no statistical differences were observed between any of the electrode conditions when additional features were extracted from the EMG signal. It was concluded that the choice of electrode should be driven by clinical factors, such as signal robustness/stability, cost, etc., instead of by classification accuracy.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:55 ,  Issue: 9 )

Date of Publication:

Sept. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.