By Topic

Automatic Detection System for Cough Sounds as a Symptom of Abnormal Health Condition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sung-Hwan Shin ; Dept. of Electr. & Mech. Eng., Seikei Univ., Tokyo, Japan ; Takeo Hashimoto ; Shigeko Hatano

The problem of attending to the health of the aged who live alone has became an important issue in developed countries. One way of solving the problem is to check their health condition by a remote-monitoring technique and support them with well-timed treatment. The purpose of this study is to develop an automatic system that can monitor a health condition in real time using acoustical information and detect an abnormal symptom. In this study, cough sound was chosen as a representative acoustical symptom of abnormal health conditions. For the development of the system distinguishing a cough sound from other environmental sounds, a hybrid model was proposed that consists of an artificial neural network (ANN) model and a hidden Markov model (HMM). The ANN model used energy cepstral coefficients obtained by filter banks based on human auditory characteristics as input parameters representing a spectral feature of a sound signal. Subsequently, an output of this ANN model and a filtered envelope of the signal were used for making an input sequence for the HMM that deals with the temporal variation of the sound signal. Compared with the conventional HMM using Mel-frequency cepstral coefficients, the proposed hybrid model improved recognition rates on low SNR from 5 dB down to -10 dB. Finally, a preliminary prototype of the automatic detection system was simply illustrated.

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:13 ,  Issue: 4 )