By Topic

Prototype personal navigation system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Soehren, W. ; Honeywell Labs., Minneapolis ; Hawkinson, W.

Honeywell Laboratories recently funded the development of a prototype personal navigation system based on MEMS technologies. The system components include a MEMS inertial measurement unit, a three-axis magnetometer, a barometric pressure sensor, and a SAASM GPS receiver. The system also uses Honeywell's human motion-based pedometry algorithm. The navigation process is based on a strap-down inertial navigator aided by feedback from a Kalman filter using typical measurements from the GPS, magnetometer and barometer when available. A key innovation is the addition of an independent measurement of distance traveled based on the use of a human motion algorithm. The navigation system combines the best features of dead reckoning and inertial navigation, resulting in positioning performance exceeding that achieved with either method alone. Subsequent to the Honeywell effort, DARPA funded an individual Personal Inertial Navigation System (iPINS) seedling program. Honeywell worked to improve the baseline personal navigation system with the objective of demonstrating the feasibility of reliably achieving navigation accuracy < 1 % of distance traveled in GPS-denied scenarios. In addition, an analysis was conducted to determine the benefit of incorporating terrain correlation into the personal navigation system. The results of this analysis indicate that overall navigation accuracy can be significantly improved through the application of terrain correlation. This presents an are presented. In addition, conclusions from the terrain correlation analysis conducted under the iPINS seedling program are included.

Published in:

Aerospace and Electronic Systems Magazine, IEEE  (Volume:23 ,  Issue: 4 )