By Topic

Study of Magnetic Easy Axis 3-D Arrangement in L1 _{0} CoPt(111)/Pt(111)/MgO(100) Tilted System for Perpendicular Recording

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

We report a study of angular magnetic properties of high-anisotropy L10 CoPt (111) films having a tilted magnetic easy axis configuration without an oblique-grain microstructure. In particular, we investigated the field dependence of remanent magnetization while rotating the magnetic field inside three intersecting planes. The out-of-plane tilting of the L10 c-axis (the easy axis of the tetragonal cell) was induced by using a Pt (111) underlayer deposited onto a single-crystal MgO substrate in a conventional frontal pulsed laser deposition (PLD). The observed behavior is consistent with the presence of four easy axes with mutually orthogonal in-plane projections, symmetrically tilted at 36deg with respect to the film plane. Such a system can be used, like a common single-axis tilted medium, to record information in perpendicular mode, lowering the writing field to approximately 75% of the value along the easy direction, while still maintaining the high thermal stability typical of the L10 alloy. Moreover, the in-plane charge compensation arising from this easy axis arrangement when a perpendicular writing field is applied may favor a media noise reduction and better performance with respect to a single-axis tilted system.

Published in:

IEEE Transactions on Magnetics  (Volume:44 ,  Issue: 5 )