By Topic

Frequency Dependent Strain-Field Hysteresis Model for Ferromagnetic Shape Memory Ni–Mn–Ga

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sarawate, N. ; Ohio State Univ., Columbus ; Dapino, M.

We quantify the relationship between magnetic fields and strains in dynamic Ni-Mn-Ga actuators. As a result of magnetic field diffusion and structural actuator dynamics, the strain-field relationship changes significantly relative to the quasistatic response as the magnetic field frequency increases. We model the magnitude and phase of the magnetic field inside a Ni-Mn-Ga sample as a 1-D magnetic diffusion problem with applied dynamic fields known on the surface of the sample, from which we calculate an averaged or effective field. We use a continuum thermodynamics constitutive model to quantify the hysteretic response of the martensite volume fraction due to this effective magnetic field. We postulate that the evolution of volume fractions with effective field exhibits a zero-order response. To quantify the dynamic strain output, we represent the actuator as a lumped-parameter, single-degree-of-freedom resonator with force input dictated by the twin-variant volume fraction. This results in a second-order, linear ordinary differential equation whose periodic force input is expressed as a summation of Fourier series terms. The total dynamic strain output is obtained by superposition of strain solutions due to each harmonic force input. The model accurately describes experimental measurements at frequencies up to 250 Hz.

Published in:

Magnetics, IEEE Transactions on  (Volume:44 ,  Issue: 5 )