Cart (Loading....) | Create Account
Close category search window
 

Synthesis of Tile Sets for DNA Self-Assembly

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaojun Ma ; Northeastern Univ., Boston ; Lombardi, Fabrizio

This paper addresses the issues revolving around the synthesis of tile sets for DNA self-assembly as a promising approach for IC manufacturing in the nanoscale. As for a finite pattern, synthesis for minimizing tile or bond types is equivalent to a minimum graph coloring problem, two greedy algorithms that reduce the number of tiles (PATS_Tile) or bonds (PATS_Bond) in synthesized tile sets are proposed and evaluated. Both algorithms are O(l4) for a square pattern of dimension l. It is shown by simulation that PATS_Tile has a better average performance if both types of reduction must be accomplished.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:27 ,  Issue: 5 )

Date of Publication:

May 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.