Cart (Loading....) | Create Account
Close category search window
 

Thermal Stability Improvement of Vertical Conducting Green Resonant-Cavity Light-Emitting Diodes on Copper Substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Huang, S.Y. ; Nat. Chung Hsing Univ., Taichung ; Horng, R.H. ; Liu, P.L. ; Wu, J.Y.
more authors

Green light vertical-conducting resonant-cavity light-emitting diodes (RCLEDs) have been fabricated on a Cu substrate by the combination of laser lift-off and plating techniques. The structure of the RCLED/Cu is consisted of the InGaN-GaN multiple-quantum-well active layer between three layers of the dielectric TiO-SiO distributed Bragg reflector as a top mirror and an Al metal layer as a bottom mirror. It was found that the RCLED with Cu substrate presents superior thermal dissipation and a stable electroluminescence emission peak wavelength (507 nm) under a high injection current. It is attributed to the Cu substrate providing a good heat sink and effectively reducing the junction temperature.

Published in:

Photonics Technology Letters, IEEE  (Volume:20 ,  Issue: 10 )

Date of Publication:

May15, 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.