Cart (Loading....) | Create Account
Close category search window
 

Short pulse injection seeding of Q-switched Nd:glass laser oscillators-theory and experiment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Basu, Santanu ; Ginzton Lab., Stanford Univ., CA, USA ; Byr, R.L.

A 0.5-GW-peak-power solid-state laser source that is based on injection seeding a Q-switched Nd:Glass laser is discussed. In the first experimental demonstration, a Q-switched oscillator producing 101 mJ was seeded by a train of 11-ps pulses from a CW (continuous-wave) mode-locked laser to produce injection-mode-locked pulses under a 91-ns envelope. A theoretical analysis of injection seeding of a high-gain Q-switched oscillator by the output of a mode-locked oscillator is presented. The numerical analysis predicts the minimum signal power required for injection mode locking and the temporal shape of the output pulse. The experimental results agree well with the theoretical predictions. The amplification demonstrated by this technique is 104.4 dB, which is much greater than that demonstrated by a multipass or regenerative amplifier. The experimental advantages of injection mode locking include greater than 100 dB of effective amplification and noncritical cavity length adjustment of the seed resonator

Published in:

Quantum Electronics, IEEE Journal of  (Volume:26 ,  Issue: 1 )

Date of Publication:

Jan 1990

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.