By Topic

Heuristic Discovery of Role-Based Trust Chains in Peer-to-Peer Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ke Chen ; Zhejiang University, Hangzhou ; Kai Hwang ; Gang Chen

Credential chains are needed in trusted peer-to-peer (P2P) applications, where trust delegation must be established between each pair of peers at specific role level. Role-based trust is refined from the coarse-grained trust model used in most P2P reputation systems. This paper offers a novel heuristic-weighting approach to selecting the most likely path to construct a role-based trust chain. We apply history-sensitive heuristics to measure the path complexity and assess the chaining efficiency. We discover successive edges of a trust chain, adaptively, to match with the demands from various P2P applications. New heuristic chaining algorithms are developed for backward, forward, and bi-directional discovery of trust chains. Our heuristic chain discovery scheme shortens the search time, reduces the memory requirement, and enhances the chaining accuracy in scalable P2P networks. Consider a trust graph over N credentials and M distinct role nodes. Our heuristic trust-chain discovery algorithms require O(N2 logN) search time and O(M) memory space, if the secondary heuristics are generated off-line in advance. These are improved from O(N3) search time and O(NM) space required in non-heuristic discovery algorithms by Li, Winsborough, and Mitchell (2003). Our analytical results are verified by extensive simulation experiments over typical classes of role-based trust graphs.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:20 ,  Issue: 1 )